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In several real-world networks such as the Internet, World Wide Web, etc., the number of links grow in time
in a nonlinear fashion. We consider growing networks in which the number of outgoing links is a nonlinear
function of time but new links between older nodes are forbidden. The attachments are made using a prefer-
ential attachment scheme. In the deterministic picture, the number of outgoing linksmstd at any timet is taken
asNstdu whereNstd is the number of nodes present at that time. The continuum theory predicts a power-law
decay of the degree distribution:Pskd~k−1−2/s1−ud, while the degree of the node introduced at timeti is given
by ksti ,td= ti

u ft / tigs1+ud/2 when the network is evolved till timet. Numerical results show a growth in the degree
distribution for smallk values at any nonzerou. In the stochastic picture,mstd is a random variable. As long
as kmstdl is independent of time, the network shows a behavior similar to the Barabási-Albert(BA) model.
Different results are obtained whenkmstdl is time dependent, e.g., whenmstd follows a distributionPsmd
~m−l. The behavior ofPskd changes significantly asl is varied: for l.3, the network has a scale-free
distribution belonging to the BA class as predicted by the mean field theory; for smaller values ofl it shows
different behavior. Characteristic features of the clustering coefficients in both models have also been
discussed.
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I. INTRODUCTION

In many real-world networks which evolve in time, the
number of links show a nonlinear growth in time[1]. Ex-
amples of such network are the Internet[2], World Wide Web
(WWW) [3], collaboration[4], word web[5], citation [6,7],
metabolism[8], gene regulatory network[9,10], etc. The
number of links may increase in a twofold way: new nodes
may tend to get attached to more nodes as the size of the
network increases, and second there may be additional links
generated between the older nodes in a nonlinear fashion as
shown in Fig. 1. These two factors may be present either
singly or simultaneously resulting in the accelerated growth.
In some networks such as the citation and the gene regula-
tory network, new links between older nodes are forbidden
and therefore only the first scheme is valid, while in collabo-
ration network or Internet, the second factor is dominating.

The case when the new node gets a fixed number of links
but older nodes get new links in a nonlinear fashion has been
considered in both isotropic and directed models of growing
networks[4,5,11], showing that it is distinct from networks
with a linear growth rule. Here, the number of links gener-
ated between the older nodes is considered to have a power-
law growth in time. This choice is made because the assump-
tion that scale-free behavior(which is a desirable feature of
networks) is present in a network with accelerated growth
has been argued to be consistent with a power-law growth of
links [11]. The evolution of the networks in these models of
accelerated growth was made using a preferential attachment
scheme as in the Barabási-Albert(BA) network [12]. In the
directed network, this rule is modified by allowing an addi-

tional parameter, the initial attractiveness, in the attachment
rule [13]. There is also an alternative way of achieving a
scale-free network proposed by Huberman and Adamic[14]
which has been used for modeling the Internet network with
accelerated growth[15].

The preferential attachment scheme in the original BA
network is the simple rule that the incoming nodes get at-
tached to theith node according to the probability

Pi =
ki

Ski
, s1d

where ki is the degreesnumber of connectionsd of the ith
node. This leads to the result that the number of linksk is
distributed according to

Pskd ~ k−g s2d

for largek. Let the ith node be introduced at timeti. Usu-
ally one node at a time is introduced such thati = ti. The
degree of theith node at a later timet is then denoted by
ksti ,td, which in the BA model can be estimated as

ksti,td = const3 F t

ti
Gb

. s3d

In general, the exponentb describes the variation of
ksti ,td with ti

−1, however in the case of the BA model, the
behavior with t is also given by the same exponent. The
values of the exponents can be obtained in the BA model
exactly: g=3 and b=1/2, satisfying the relationbsg−1d
=1. This relation holds good in a more generalized version of
the BA model as well[13]. In the BA network, the incoming
node gets a fixed number of linksm0 and the characteristics
of the network do not depend on the specific value ofm0. No*Electronic address: parongama@vsnl.net,paro@cubmb.ernet.in
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new link between older nodes is allowed. The models of
accelerated growth considered so far assume that older nodes
get new links[scheme(b) in Fig. 1], which is a sufficient
departure from the original Barabási-Albert model. We con-
sider the simpler case where the number of outgoing links
mstd is no longer a constant but a function of time and no
new link between older nodes is allowed[scheme(a) of Fig.
1]. This is also a realistic scheme as one can expect the
number of attachments of a new node to increase when it is
exposed to a larger environment. We have considered both
deterministic and stochastic rules governing the form ofmstd.

The focus of the present paper is on the behavior of the
various degree distributions in the networks with accelerated
growth. A brief discussion of the clustering properties of the
networks has also been made. The clustering coefficientCi
measures the number of links between the neighbors of the
ith node. Here we have estimated the average clustering co-
efficient Cstd in a network evolved upto timet (equal to the
number of nodes) and also the the average clustering coeffi-
cientCskd of nodes with degreek. These quantities have been
shown to have interesting properties in networks[16].

In Sec. II, the deterministic picture is discussed where the
number of outgoing links increases in time in a deterministic
manner and in Sec. III, stochastic models are considered in
which the number of outgoing links is a random variable. In
the last section, the results are summarized and discussed.

II. DETERMINISTIC MODEL

Let the number of nodes in a growing network beNstd at
time t. In the deterministic model, we take the number of
outgoing links available to an incoming node to bemstd
=Nstdu. In a network which is grown by introducing one
node at a time,Nstd= t, and thereforemstd= tu, ensuring an
accelerated growth in the number of links in the network.
The links are made according to Eq.(1) as usual.

One can obtain an expression forksti ,td andPskd using a
continuum theory following Ref.[17]. Here the rate of
change ofksti ,td is taken proportional toki /Ski. Going to the
continuum limit the total number of links isetudu= t1+u / s1
+ud at time t, and the equation governingksti ,td takes the
form

] ksti,td
] t

=
su + 1dksti,td

2t
, s4d

leading to

ksti,td = ti
uF t

ti
Gs1+ud/2

. s5d

In the last equation the boundary conditionksti ,t= tid= ti
u has

been inserted. From the above equation, we find thatb=s1
−ud /2. Thatksti ,td is not a function oft / ti alone is a result
significantly different from the BA network. The degree dis-
tribution at timet shows the following behavior:

Pskd =
2

1 − u
k−1−2/s1−udfstd. s6d

where fstd=f1/s1+tdgts1+ud/s1−ud. The value ofg is therefore
given by

g = 1 +
2

1 − u
. s7d

In this model, there are two known limits:u=0 corre-
sponds to the BA model andu=1 corresponds to a fully
connected network(i.e., anN-clique). For the BA model, the
degree distribution is a power-law distribution while for the
fully connected network,Pskd is a delta function. This im-
plies the possibility of the existence of a “critical”uc where
a peak occurs in the degree distribution for the first time. We
conduct numerical simulations to explore this possibility.

In the simulation, nodes are added one by one. A specific
number of links are assigned to each incoming node[mstd
= tu: the nearest integer is chosen] and links are made by the
preferential attachment scheme. For larger values ofu the
network becomes highly connected and it takes a lot of time
to generate it. Hence we restrict to values ofuø0.7 and to
times tø4000; the latter is also the size of the network. The
results show complete agreement with the analytical results
as far as the decay of the degree distribution for largek is
concerned(Fig. 2). A growth of the distribution for smallk
values is noted as well. This growth seems to be faster than
exponential asu is made larger. This fast growth suggests
that the form ofPskd may be assumed to bePskd,k−gQsk
−kcd wherekc is the value at whichPskd is maximum. The
normalization of Pskd can then be done by making
ekc

` Pskddk=1. SubstitutingPskd from Eq. (6) and following
the above normalization procedure, we get an estimate ofkc
as a function oft, which is preciselykc= tu for large t. The
numerical results for discrete systems also agree with the
above scaling, the agreement becoming better for larger val-
ues ofu.

Interestingly, we find that a peak is present in the degree
distribution even for values ofu,1 which indicates the ex-
istence ofuc. Analyzing the numerical results for small val-
ues ofu, we find that the peak in the distribution occurs as
soon asu is made nonzero. This is established by the fact
that as the network size is made larger(i.e., the time to which

FIG. 1. The way accelerated growth takes place: in scheme(a),
followed in this paper, the new node gets an increased number of
links as time progresses, no new link between old nodes are al-
lowed. In scheme(b), the new node gets a single link and old nodes
get new links(shown by dashed lines) with the total number of
links following a nonlinear growth in time. The most general case is
a combination of the two schemes.
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the network is evolved is made larger) the peak becomes
sharper andPskd decreases for smallk values. Hence we
conclude thatuc=0.

Although in this networkPskd has been calculated from
the total degree of the nodes, we notice an interesting behav-
ior of the distributions of the in-degreekin and out-degree
kout taken separately. It may be mentioned here that these
distributions have also been obtained for real networks and
in many of them it is seen that these are also scale-free with
distinct exponents[18]. The number of outgoing links in the
present network is deterministic and has the following fea-
ture: the firstn1 nodes have out-degree 1, the nextn2 have
out-degree 2, and so on(this is due to the discrete nature of
the network). For u=0, all nodes have out-degree 1 and its
distributionPoutskoutd is a delta function(n1 equals the num-
ber of nodes in the system and allni =0 for i Þ1). For u=1,
n1=1,n2=1,n3=1, etc., and the out-degree distribution is a
flat one. For intermediate values ofu, the exact form of
Poutskoutd can be easily found out. Lett be the first time when
the out-degree of the incoming node iskout andt+Dt the time
at which the out-degree increases tokout+1. Clearly Dt
=Poutskoutd and sincekout= tu, we haveutu−1Dt=1. Therefore

Poutskoutd ~
1

u
kout

s1−ud/u. s8d

Hence we find that the out-degree distribution actually grows
with the degree, a result which is also verified in the numeri-
cal simulationssFig. 3d. Since foru,1, the out-degree never
assumes a very large value in a network of finite size, we
also note that for largek, the contribution toPskd is mainly
from kin. Consequently, we expect thatPinskind will have a
power-law tail with g given by Eq.s7d. This is also con-
firmed numerically. The growing region of the total degree
distribution for smallk is accounted for by the growing
out-degree distribution as in this region bothkin and kout
contribute.

The behavior ofksti ,td is also in complete agreement with
the theoretical results: plotting the scaledksti ,td / ts1+ud/2

againstti for different values oft, a data collapse is obtained.
This is shown in Fig. 4 foru=0.4. The agreement with the
continuum results becomes better asti increases.

All clustering coefficients atu=0 are zero as no loops are
allowed in this case. Asu is increased,Cstd (with fixed t)
shows an increase as expected. The increase is not very sharp
at small values ofu, e.g., foru as high as 0.5,Cstd=0.038 for
t=2000. SinceCstd=1 for u=1, it is expected thatCstd will
show a sharper increase for larger values ofu; it is however
difficult to simulate networks in this range of values ofu to
check this behavior.Cstd as a function oft shows a behavior
similar to the BA model; it decreases witht (at least upto
u=0.4; we have not studied this variation beyond this value).
This decrease is also expected to have a dependence onu [in
the limit u=1,Cstd, is independent oft]. We have not, how-
ever, attempted to study in detail the dependence ofCstd with
t asu is varied.

FIG. 2. The normalized degree distributions in the deterministic
network foru=0.1,0.3, and 0.5 are shown along with straight lines
in the log-log plot which have slopes according to Eq.(6). For u
=0.1 and 0.3,t=4000 and foru=0.5, t=2000.

FIG. 3. The in-degree, out-degree, and total degree distributions
for u=0.4 are shown.Poutskoutd is fitted with the calculated slope
given by Eq.(8).

FIG. 4. The scaling plot forksti ,td is shown foru=0.4. Here
ksti ,td has been scaled byt0.7 asksti ,td varies astsu+1d/2 according to
Eq. (5). The straight line is drawn with slope 0.3 asb=s1−ud /2
=0.3 here.
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We have also calculatedCskd when t is kept fixed which
again shows a behavior similar to the BA model for large
values ofk, i.e., for nonzero values ofu ,Cskd becomes a
constant. This constant is a function ofu and we find that
Cskd,u 2 for largek gives a good fit to the data.

III. STOCHASTIC MODELS

The assumption that an incoming node gets attached to a
fixed number of nodes at a given time in the deterministic
model is somewhat artificial. In most social networks, the
outgoing links also have a distribution which usually shows a
decay [18]. Hence one should consider randomness in the
number of outgoing links in a realistic manner such that the
number of outgoing linksm is not fixed at timet but is a
stochastic variable. In fact,m can be a stochastic variable
even in the conventional BA model by not putting any re-
striction on the number of outgoing links. This can be
achieved by simply allowing each existing node the possibil-
ity to get attached to the incoming node according to the
probability given in Eq.(1). However, it is known that mak-
ing m random in this way does not change the BA universal-
ity class. This happens because even thoughm is random,
kmstdl, the mean value is practically independent of time.
Thus it is possible to replacem0 by kmstdl in the rate equa-
tion for ksti ,td [17] and get the same results as in the BA
model. Such a replacement is meaningful as long as the fluc-
tuations are negligible which is true in the unrestricted BA
case. This we have checked by numerical simulations also.

To get a stochastic model in whichkmstdl is a function of
time, we letmstd follow a distribution which depends on the
number of nodesNstd present at that time. The choice of the
distribution can be done in many ways. However, we find
that in many real networks, where the distribution of the
out-degree has been done, the distribution shows either a
power law (e.g., the WWW or phone-call network) or an
exponential(e.g., as in the citation network) tail [18]. This
study has been done in networks evolved for a sufficient
duration of time; here we assume that the same kind of dis-
tribution is valid for intermediate times. The dependence on
the number of nodes present in the system at timet occurs by
putting the upper bound ofmstd equal toNstd.

Taking an exponentially decaying distribution ofmstd,
however, again gives nothing new. This is because the mean
valuekmstdl becomes time independent(within a short time)
and therefore we get the BA network again. Thus we focus
our attention on the model in whichmstd follows a power-
law distribution, i.e.,Pmsmstdd~mstd−l with 1ømstdøNstd.
Again we takeNstd= t, i.e., one node is being added at a
time.

In this modelkmstdl will have the following behavior:

kmstdl , t sl , 1d s9ad

,t2−l s1 , l , 2d s9bd

,O s1dsl . 2d. s9cd

Assuming thatm can be replaced by its meankmstdl, the
continuum theory discussed in the last section can be used
for the stochastic model as well once we define an effective
u from the above equations. Thusuef f=0 for l.2, uef f=1
for l,1, and for 1,l,2, uef f=2−l. We should not, how-
ever, expect this “continuum mean field theory” to be valid if
the fluctuations are not negligible. An estimate of the fluc-
tuation inm can also be made which shows that it increases
asl decreases and cannot be neglected forl,3.

We use numerical simulations to find out the validity of
the continuum mean field theory in the stochastic models.
Plotting Pskd vs k (Fig. 5) for several values ofl, we find
that for large values ofl it is indeed BA-like. Asl is de-
creased it deviates from the power-law behavior. It is diffi-
cult to locate the exact value ofl where the change in be-
havior occurs, but clearly, the scale-free behavior observed
for l.3 is no longer valid for values ofl above 2 but less
than 3. For 2,l,3, the fluctuationsskm2l−kml2d scale like
Nstd3−l, which means that it becomes stronger for largeNstd
and forl closer to 2. IncreasingNstd to large values is dif-
ficult as it takes a long time to generate the network. So we
analyze the behavior ofPskd for l close to 2, e.g., atl
=2.2 and 2.5, to check the role of fluctuations. For both these
values, the behavior ofPskd agrees better with a stretched
exponential behavior:Pskd,exps−akbd albeit with very
small values ofbsb,0.10d. For 1,l,2, the deviation from
power law is quite clear. Asl is made smaller than 2, the
behavior ofPskd is no longer monotonic and for small values
of k it can be fitted to a stretched exponential function withb
depending onl. The range ofk over whichPskd follows a
stretched exponential behavior shrinks beyondl=1.5 where
it shows a sharp drop(see for instance the curves forl
=1.2 and 1.0 in Fig. 6).

For values ofl,1, the fluctuations increase rapidly and
the network takes very long time to be generated as it be-
comes more and more clustered.Pskd shows a slow decay
for 0.5,l,1 over a long range ofk and drops sharply ask

FIG. 5. The degree distributions for the stochastic model for
several values ofl (denoted by the labels) are shown. In between
the BA curve and the curve forl=2.5, the two unlabeled curves
correspond tol=4.0 andl=3.0. For higher values ofl, the net-
work is grown to 4000 nodes while for the lowermostl, we have
maximum 1000 nodes.
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approaches the total number of nodes in the network. The
distribution becomes flatter asl is decreased. Belowl=0.5,
a weakly growing region emerges. In fact, a peak appears
and becomes sharper asl is made smaller. The position of
the peak, ast is made larger, also shifts towards largerk, e.g.,
for l=0.3, the peak is atk,500 for t=1000 and atk
,1000 fort=2000. A systematic study demands a very large
amount of computer time and we have not attempted it. Nor
do we try to fit the data to any familiar form because of the
large amount of fluctuations.

As in case of the deterministic network, here too one can
find out the individual distributionsPout and Pin. As ex-
pected,Pout shows a power-law decay with exponentl. Pin
almost coincides with the total degree distribution as the net-
work becomes larger.

The behavior ofksti ,td has also been studied in this net-
work. Again we find a deviation from the power-law behav-
ior as l becomes less than 3. Asl is made smaller,ksti ,td
becomes flat as expected.

The clustering coefficients have been estimated in this
model as well.Cstd as a function ofl shows a increase asl
is decreased as expected[e.g., forl=3.0,Cstd=0.029 and for
l=1.5, Cstd=0.679 for t=1000]. As a function of t, Cstd
shows a decrease witht for l.2.0. However, asl is made
smaller, for the values oftø2000 at least,Cstd shows an
increase witht. We conjecture thatCstd becomes independent
of t for large t values forl,2.0. HereCskd shows a loga-
rithmic decay withk: Cskd,a−b lnsckd with the values of
a,b depending strongly onl andc.1 for all l. Both a and
b approach zero for very largel. As l is decreased botha
andb increase indicating a larger value ofCskd together with
a sharper decay.

IV. SUMMARY, COMMENTS, AND DISCUSSIONS

We have considered both deterministic and stochastic
models of growing networks with preferential attachment in
which the number of incoming links is a function of time. In

both models we have followed simple rules of evolution with
a single tunable parameter. The main results obtained in the
deterministic model are as follows:

(1) A power-law decay of the total degree distribution
Pskd for large k is obtained which is consistent with the
continuum theory.

(2) A growing region inPskd for smallk is also observed.
This is due to the behavior of the out-degree distribution
which has a power-law increase. A peak is obtained inPskd
for any u.0. The peak positionkc is found to vary astu.

(3) The values of the exponentsg andb can be obtained.
They satisfy the relationbsg−1d=1 as in a general BA
model.

(4) ksti ,td can be estimated. It is not a function oft / ti as
in the BA model.

(5) The degree distributionPskd is also found to be non-
stationary, i.e., dependent on the time upto which the net-
work has been evolved.

The main results of the stochastic model are as follows:
(1) The behavior ofPskd depends on the value ofl. The

mean field theory predicts a transition atl=2 above which it
becomes BA-like. The numerical simulations show that for
l.3 the degree distribution is scale-free withg=3.

(2) The degree distribution loses its power-law decay na-
ture at values ofl,3 and assumes a stretched exponential
form: Pskd~exps−axbd. However, the deviation from the
scale-free behavior is marginal, as indicated by the low value
of b in the region 2,l,3. Hence this may be a correction
to the BA scaling and therefore, it may not be correct to
conclude that a phase transition has occurred atl=3. Clear-
cut inconsistency with the mean field theory is observed for
smaller values ofl when the stretched exponential behavior
of Pskd becomes more pronounced. For very small values of
l, a weakly growing region inPskd emerges. The data, with
a lot of fluctuations, are difficult to handle in this region.
However, this region is not of much interest to us as for real
networks, such smalll values seem unrealistic.

(3) The power-law decay behavior ofksti ,td observed for
l.3 also becomes invalid asl is made smaller.

(4) For large values ofl, the degree distribution is sta-
tionary while for smalll (presumably forl,0.5) it be-
comes dependent on the size of the network.

A straightforward comparison of the above two models
shows that the stochastic model is closer to real-world net-
works. This is concluded from comparison with real-world
data: the out-degree distributions in phone call, citation, etc.,
networks show a decay, either power law or exponential,
while in the deterministic model, we find a growing behav-
ior. Even though we get a power-law decay ofPskd in the
deterministic model, the exponentg is always.3 while in
most real networks, it is closer to 2 and can be even less than
2. The stochastic model on the other hand has an out-degree
distribution which shows a power-law decay. It also shows
that the scale-free behavior can vanish even in a growing
network with preferential attachment. In fact the stretched
exponential behavior of the degree distribution observed for
small degrees is reminiscent of the behavior of the degree
distribution in citation network[6]. The stochastic model is
also of theoretical interest as it indicates the existence of

FIG. 6. The degree distribution is plotted againstkb to show the
stretched exponential behavior for several values ofl (the labels
denote the values ofl). The values ofb are 0.1, 0.20, 0.42, 0.3, and
0.2 for l=2.2,1.8,1.5,1.2,1.0, respectively.
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transitions at finite values ofl. However, the deterministic
model has its own merits: it is easy to construct and a num-
ber of results for it can be obtained analytically in the con-
tinuum limit. The peak obtained in the total degree distribu-
tion in this model may be compared to similar peaks
obtained in some real-world networks, e.g., the coauthorship
network [18] or the Indian railways network[19].

The citation network is perhaps the most appropriate net-
work which the stochastic model emulates. However, the ci-
tation network is essentially a directed network. Therefore
we have also considered a specific directed model in the
stochastic case, which follows the attachment rule as in Ref.
[13] and wherePmsmd has a peak and an exponential decay
[7]. The results show that it has a power-law decay in the
in-degree distribution withg,2 (not much different from
the case when there is no accelerated growth[13]). There are
some available data on citation network[6,7] but the data
and the analyses are not sufficiently general to compare with
simulation data. In this context it may be mentioned that in a
model to simulate the gene regulatory network, which is a

directed network with accelerated growth, the outgoing links
also show a power law with exponent close to 2 in good
agreement with theory[10].

In conclusion, we have tried to construct models of accel-
erated growth where the number of outgoing links increase
with the network size following certain prescriptions. A con-
tinuum theory can be formulated for the deterministic case
which can be applied in the stochastic case in the mean field
limit. Based on the different results obtained in the models
we conclude that the stochastic model is closer to real-world
networks.
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