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Accelerated growth in outgoing links in evolving networks:
Deterministic versus stochastic picture

Parongama Sén
Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
(Received 31 October 2003; published 26 April 2p04

In several real-world networks such as the Internet, World Wide Web, etc., the number of links grow in time
in a nonlinear fashion. We consider growing networks in which the number of outgoing links is a nonlinear
function of time but new links between older nodes are forbidden. The attachments are made using a prefer-
ential attachment scheme. In the deterministic picture, the number of outgoingrifbkat any timet is taken
asN(t)? whereN(t) is the number of nodes present at that time. The continuum theory predicts a power-law
decay of the degree distributioR{k) o k™172(1-9 while the degree of the node introduced at titnis given
by k(t;,t) :tf’ [t/t;]2*%2 when the network is evolved till time Numerical results show a growth in the degree
distribution for smallk values at any nonzer@. In the stochastic picturen(t) is a random variable. As long
as{m(t)) is independent of time, the network shows a behavior similar to the Barabasi-A¥ytmodel.
Different results are obtained whém(t)) is time dependent, e.g., whan(t) follows a distributionP(m)

«m™, The behavior ofP(k) changes significantly as is varied: for A>3, the network has a scale-free
distribution belonging to the BA class as predicted by the mean field theory; for smaller valnassifows
different behavior. Characteristic features of the clustering coefficients in both models have also been
discussed.
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[. INTRODUCTION tional parameter, the initial attractiveness, in the attachment
rule [13]. There is also an alternative way of achieving a
scale-free network proposed by Huberman and Addiig
which has been used for modeling the Internet network with
accelerated growthl5].

In many real-world networks which evolve in time, the
number of links show a nonlinear growth in tinj&]. Ex-
amples of such network are the Interfigf, World Wide Web

(WWW) [3], collaboration[4], word web5], citation[6, 7], The preferential attachment scheme in the original BA

metabolism[8], gene regulatory network9,10], etc. The . . ; .

number of links may increase in a twofold way: new nodesnenr']\'odrk IS r:hehsméole rule éhat ther:ncomén%_lr)odes get at-
may tend to get attached to more nodes as the size of thtgc ed to theth node according to the probability
network increases, and second there may be additional links ki

generated between the older nodes in a nonlinear fashion as I = 2_k (1)
shown in Fig. 1. These two factors may be present either !

singly or simultaneously resulting in the accelerated growthwhere k; is the degregnumber of connectionsof the ith

In some networks such as the citation and the gene regulgrode. This leads to the result that the number of likks

tory network, new links between older nodes are forbiddemistributed according to

and therefore only the first scheme is valid, while in collabo-

ration network or Internet, the second factor is dominating. P(k) < k™ 2

The case when the new node gets a fixed number of link . . .

but older nodes get new links in a nonlinear fashion has bee rlargek. Let the|th_nodfa k_)e introduced at tintp Usu-

considered in both isotropic and directed models of growingally one nod(_—:' at a time is mtrod_uce.d such tha;. The

networks[4,5,11], showing that it is distinct from networks degree Of. the'th node at a later timeis th(_an denoted by

with a linear growth rule. Here, the number of links gener-k(ti’t)’ which in the BA model can be estimated as

ated between the older nodes is considered to have a power- t]s

law growth in time. This choice is made because the assump- k(t;,t) = constx [—] . (3)

tion that scale-free behavigwhich is a desirable feature of b

networks is present in a network with accelerated growth |5 general, the exponeng describes the variation of

has been argued to be consistent with a power-law growth . t) with t1, however in the case of the BA model, the

links [11]. The evolution of the networks in these models of yahavior witht is also given by the same exponent. The

accelerated growth was made using a preferential attachmeps | es of the exponents can be obtained in the BA model

scheme as in the Barabasi-AlbéRBA) network[12]. In the exactly: y=3 and B=1/2, satisfying the relation3(y-1)

directed network, this rule is modified by allowing an addi- =y Thjs relation holds good in a more generalized version of
the BA model as wel[13]. In the BA network, the incoming
node gets a fixed number of links, and the characteristics

*Electronic address: parongama@vsnl.net,paro@cubmb.ernet.irof the network do not depend on the specific valuengfNo
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Scheme (a) Scheme (b) ak(t,t)  (8+ Dk(t;,t)
=0 o = ’ (4)
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later time I

FIG. 1. The way accelerated growth takes place: in sch@ne In theilast equation the boundary Con‘_jitik(mi 't:f‘i):tia has
followed in this paper, the new node gets an increased number d¥€€n inserted. From the above equation, we find Bvtl
links as time progresses, no new link between old nodes are ar 6)/2. Thatk(t;,t) is not a function oft/t; alone is a result
lowed. In scheméb), the new node gets a single link and old nodes significantly different from the BA network. The degree dis-
get new links(shown by dashed lingswith the total number of tribution at timet shows the following behavior:
links following a nonlinear growth in time. The most general case is
a combination of the two schemes. 2
P(k) = 1—0k—1-2“—0>f(t). (6)
new link between older nodes is allowed. The models of
accelerated growth considered so far assume that older nodeere f(t)=[1/(1+t)[t*?1=0_ The value ofy is therefore
get new links[scheme(b) in Fig. 1], which is a sufficient given by
departure from the original Barabasi-Albert model. We con-
sider the simpler case where the number of outgoing links
m(t) is no longer a constant but a function of time and no y=1 +m- (7)
new link between older nodes is allowggthemga) of Fig.

1]. This is also a realistic scheme as one can expect the In this model, there are two known limitg=0 corre-
number of attachments of a new node to increase when it isponds to the BA model and=1 corresponds to a fully
exposed to a larger environment. We have considered bottonnected network.e., anN-clique). For the BA model, the
deterministic and stochastic rules governing the forrm@j.  degree distribution is a power-law distribution while for the

The focus of the present paper is on the behavior of thdully connected networkP(k) is a delta function. This im-
various degree distributions in the networks with accelerateglies the possibility of the existence of a “critica#, where
growth. A brief discussion of the clustering properties of thea peak occurs in the degree distribution for the first time. We
networks has also been made. The clustering coefficient conduct numerical simulations to explore this possibility.
measures the number of links between the neighbors of the In the simulation, nodes are added one by one. A specific
ith node. Here we have estimated the average clustering coumber of links are assigned to each incoming nfri&)
efficientC(t) in a network evolved upto time(equal to the  =t% the nearest integer is chogeand links are made by the
number of nodesand also the the average clustering coeffi-preferential attachment scheme. For larger value9 dfe
cientC(k) of nodes with degrek. These quantities have been network becomes highly connected and it takes a lot of time
shown to have interesting properties in netwojke). to generate it. Hence we restrict to valuesés£ 0.7 and to

In Sec. II, the deterministic picture is discussed where thdimest=<4000; the latter is also the size of the network. The
number of outgoing links increases in time in a deterministic’eésults show complete agreement with the analytical results
manner and in Sec. I, stochastic models are considered ids far as the decay of the degree distribution for ldcge
which the number of outgoing links is a random variable. InconcernedFig. 2). A growth of the distribution for smalk

the last section, the results are summarized and discussedvalues is noted as well. This growth seems to be faster than
exponential ag® is made larger. This fast growth suggests

Il. DETERMINISTIC MODEL that the form pr(k) may be as;umed t'o b@(k}~k‘7®(k
—-k.) wherek; is the value at whiciP(k) is maximum. The

Let the number of nodes in a growing network &) at  normalization of P(k) can then be done by making
time t: In t_he deter.ministic mod_el, we take the number ofﬁkc P(k)dk=1. SubstitutingP(k) from Eq. (6) and following
outgoing links available to an incoming node to b¥t) g ahove normalization procedure, we get an estimate of
=N(®’. In a network which is grown by introducing one as a function of, which is preciselyk,=t’ for larget. The
node at a timeN(t)=t, and thereforem(t)=t’, ensuring an  numerical results for discrete systems also agree with the
accelerated growth in the number of links in the network.ahove scaling, the agreement becoming better for larger val-
The links are made according to Eq) as usual. ues ofé.

One can obtain an expression kit;,t) and P(k) using a Interestingly, we find that a peak is present in the degree
continuum theory following Ref[17]. Here the rate of distribution even for values o<1 which indicates the ex-
change ok(t;,t) is taken proportional t&;/>k;. Going to the  istence of¢,. Analyzing the numerical results for small val-
continuum limit the total number of links it®d6=t*/(1  ues of#, we find that the peak in the distribution occurs as
+0) at timet, and the equation governiridt;,t) takes the soon as¢ is made nonzero. This is established by the fact
form that as the network size is made largez., the time to which
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FIG. 2. The normalized degree distributions in the deterministic ~ FIG. 3. The in-degree, out-degree, and total degree distributions

network for6=0.1,0.3, and 0.5 are shown along with straight linesfor 9=0.4 are shownP,{(kyy is fitted with the calculated slope
in the log-log plot which have slopes according to E8). For 6 given by Eq.(8).
=0.1 and 0.31=4000 and for9=0.5,t=2000.

The behavior ok(t;,t) is also in complete agreement with
the network is evolved is made largehe peak becomes the theoretical results: plotting the scalddt;,t)/t:+0/2
sharper andP(k) decreases for smak values. Hence we against; for different values of, a data collapse is obtained.
conclude tha®,=0. This is shown in Fig. 4 fom=0.4. The agreement with the

Although in this networkP(k) has been calculated from continuum results becomes bettertamcreases.

the total degree of the nodes, we notice an interesting behav- All clustering coefficients at=0 are zero as no loops are
ior of the distributions of the in-degrele, and out-degree allowed in this case. A9 is increasedC(t) (with fixed t)
Kout taken separately. It may be mentioned here that thesshows an increase as expected. The increase is not very sharp
distributions have also been obtained for real networks andt small values of), e.g., foré as high as 0.57(t)=0.038 for
in many of them it is seen that these are also scale-free with=2000. SinceC(t)=1 for §=1, it is expected thaf(t) will
distinct exponent§18]. The number of outgoing links in the show a sharper increase for larger valuegat is however
present network is deterministic and has the following feadifficult to simulate networks in this range of values tfo
ture: the firstn; nodes have out-degree 1, the nexthave  check this behavioC(t) as a function ot shows a behavior
out-degree 2, and so dthis is due to the discrete nature of similar to the BA model; it decreases with(at least upto
the networl. For #=0, all nodes have out-degree 1 and its 9=0.4; we have not studied this variation beyond this value
distribution Py((Koyy) is @ delta functior(n; equals the num-  Thjs decrease is also expected to have a dependengéion
ber of nodes in the system and gj0 fori+1). For 6=1,  the limit §=1,C(t), is independent of]. We have not, how-
n;=1,m=1,n3=1, etc., and the out-degree distribution is aever, attempted to study in detail the dependene&Bfwith
flat one. For intermediate values @ the exact form of { 350 is varied.
Pout(kouy can be easily found out. Lébe the first time when
the out-degree of the incoming nodekjg; andt+ At the time 10 p——r———rr— g
at which the out-degree increases kg,+1. Clearly At i
=Pyui(Kou) and sincek,,=t’, we havest At=1. Therefore

1 .,_
Pout(kout) & 5 (lutﬁ)m' (8

Hence we find that the out-degree distribution actually grows
with the degree, a result which is also verified in the numeri-
cal simulationgFig. 3. Since ford< 1, the out-degree never
assumes a very large value in a network of finite size, we
also note that for largk, the contribution toP(k) is mainly 0.01 T Ny N
from k,. Consequently, we expect thaf,(k;,) will have a N
power-law tail with y given by Eq.(7). This is also con- '
firmed numerically. The growing region of the total degree  FIG. 4. The scaling plot fok(t;,t) is shown for=0.4. Here
distribution for smallk is accounted for by the growing kt,t) has been scaled i ask(;,t) varies ag!**?’2 according to
out-degree distribution as in this region bdtfj and k,,;  Eq. (5). The straight line is drawn with slope 0.3 @s(1-6)/2
contribute. =0.3 here.

1000 10000
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We have also calculated(k) whent is kept fixed which 1.0000
again shows a behavior similar to the BA model for large )
values ofk, i.e., for nonzero values of,,C(k) becomes a
constant. This constant is a function éfand we find that
C(k) ~ #? for largek gives a good fit to the data. 0.0100

P(k)

Ill. STOCHASTIC MODELS

The assumption that an incoming node gets attached to:  0-0001

fixed number of nodes at a given time in the deterministic
model is somewhat artificial. In most social networks, the
outgoing links also have a distribution which usually shows a
decay[18]. Hence one should consider randomness in the
number of outgoing links in a realistic manner such that the
number of outgoing linksn is not fixed at timet but is a
stochastic variable. In factn can be a stochastic variable  FIG. 5. The degree distributions for the stochastic model for
even in the conventional BA model by not putting any re-several values ok (denoted by the labelsare shown. In between
striction on the number of outgoing links. This can bethe BA curve and the curve for=2.5, the two unlabeled curves
achieved by simply allowing each existing node the possibilcorrespond to\=4.0 and\=3.0. For higher values of, the net-

ity to get attached to the incoming node according to thework is grown to 4000 nodes while for the lowermastwe have
probability given in Eq(1). However, it is known that mak- maximum 1000 nodes.

ing mrandom in this way does not change the BA universal-
ity class. This happens because even thoogls random,

000 10000

Assuming thaim can be replaced by its medm(t)), the
continuum theory discussed in the last section can be used

(m(t)), the mean value is practically independent of time. . . ;
Thus it is possible to replacs, by (m(t)) in the rate equa- for the stochastic modeI. as well once we define an effective
6 from the above equations. Thuss=0 for A>2, 0.4=1

tion for k(t;,t) [17] and get the same results as in the BAfor \ <1, and for 1<\ <2, y1;=2-\. We should not, how-
model. Such a replacement is meaningful as long as the flugver, expect this “continuum mean field theory” to be valid if
tuations are negligible which is true in the unrestricted BAthe fluctuations are not negligible. An estimate of the fluc-
case. This we have checked by numerical simulations alsotyation inm can also be made which shows that it increases
To get a stochastic model in whigh(t)) is a function of a5\ decreases and cannot be neglected\far3.
time, we letm(t) follow a distribution which depends on the ~ We use numerical simulations to find out the validity of
number of noded(t) present at that time. The choice of the the continuum mean field theory in the stochastic models.
distribution can be done in many ways. However, we findPlotting P(k) vs k (Fig. 5) for several values ok, we find
that in many real networks, where the distribution of thethat for large values ok it is indeed BA-like. As\ is de-
out-degree has been done, the distribution shows either @eased it deviates from the power-law behavior. It is diffi-
power law (e.g., the WWW or phone-call networlor an  cult to locate the exact value af where the change in be-
exponential(e.g., as in the citation networkail [18]. This  havior occurs, but clearly, the scale-free behavior observed
study has been done in networks evolved for a sufficienfor A >3 is no longer valid for values of above 2 but less
duration of time; here we assume that the same kind of disthan 3. For 2\ < 3, the fluctuationg(m?)—(m)?) scale like
tribution is valid for intermediate times. The dependence orN(t)3, which means that it becomes stronger for lakje
the number of nodes present in the system at timecurs by and for\ closer to 2. Increasingl(t) to large values is dif-
putting the upper bound ofi(t) equal toN(t). ficult as it takes a long time to generate the network. So we
Taking an exponentially decaying distribution of(t),  analyze the behavior oP(k) for A close to 2, e.g., ah
however, again gives nothing new. This is because the mean2 2 and 2.5, to check the role of fluctuations. For both these
value(m(t)) becomes time independeithin a shorttime¢  values, the behavior dP(k) agrees better with a stretched
and therefore we get the BA network again. Thus we focusxponential behavior:P(k) ~exp(-ak?) albeit with very
our attention on the model in whiaim(t) follows a power-  small values ob(b~ 0.10. For 1<\ < 2, the deviation from
law distribution, i.e.,Pr(m(t)) =m(t)™ with I<m(t) <N().  power law is quite clear. Aa is made smaller than 2, the
Again we takeN(t)=t, i.e., one node is being added at a behavior ofP(k) is no longer monotonic and for small values

time. of kit can be fitted to a stretched exponential function vkith
In this modeKm(t)) will have the following behavior: depending on\. The range ok over whichP(k) follows a
stretched exponential behavior shrinks beyardl.5 where
m)) ~t (A<D (98 it shows a sharp drogsee for instance the curves far
=1.2and 1.0 in Fig. B
~2 (1<\<2) (9b) For values ofA <1, the fluctuations increase rapidly and

the network takes very long time to be generated as it be-
comes more and more clusterd®lk) shows a slow decay
~0 (H(A>2). (9c) for 0.5<\ <1 over a long range df and drops sharply ds
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1.0000 T T T T T both models we have followed simple rules of evolution with
a single tunable parameter. The main results obtained in the
deterministic model are as follows:

(1) A power-law decay of the total degree distribution
P(k) for large k is obtained which is consistent with the
continuum theory.

(2) A growing region inP(k) for smallk is also observed.
This is due to the behavior of the out-degree distribution
which has a power-law increase. A peak is obtaine@(k)
for any #>0. The peak positiot, is found to vary ag’.

(3) The values of the exponenisand 8 can be obtained.
They satisfy the relation3(y—1)=1 as in a general BA
model.

(4) k(t;,t) can be estimated. It is not a function @t; as
in the BA model.

FIG. 6. The degree distribution is plotted agaikisto show the (5 The degree distributioR(k) is also found to be non-
stretched exponential behavior for several values gthe labels  stationary, i.e., dependent on the time upto which the net-
denote the values of). The values ob are 0.1, 0.20, 0.42, 0.3, and work has been evolved.

0.2 forn=2.2,1.8,1.5,1.2,1.0, respectively. The main results of the stochastic model are as follows:
(1) The behavior ofP(k) depends on the value af The
approaches the total number of nodes in the network. Théean field theory predicts a transition\at 2 above which it
distribution becomes flatter asis decreased. Below=0.5, becomes BA-like. The numerical simulations show that for
a weakly growing region emerges. In fact, a peak appears >3 the degree distribution is scale-free wig 3.
and becomes sharper asis made smaller. The position of ~ (2) The degree distribution loses its power-law decay na-
the peak, asis made |arger, also shifts towards |argee_g_1 ture at values oh <3 and assumes a stretched exponential
for A=0.3, the peak is ak~500 for t=1000 and atk  form: P(k) < exp(-ax’). However, the deviation from the
~ 1000 fort=2000. A systematic study demands a very largescale-free behavior is marginal, as indicated by the low value
amount of computer time and we have not attempted it. Nopf b in the region 2<\ <3. Hence this may be a correction
do we try to fit the data to any familiar form because of theto the BA scaling and therefore, it may not be correct to
large amount of fluctuations. conclude that a phase transition has occurrexi=8. Clear-

As in case of the deterministic network, here too one carfut inconsistency with the mean field theory is observed for
find out the individual distributions,,, and P,,. As ex- smaller values ok when the stretched exponential behavior
pected,P,,; shows a power-law decay with exponentP;, of P(k) becomes more pronounced. For very small values of
almost coincides with the total degree distribution as the netA, a weakly growing region ifP(k) emerges. The data, with
work becomes larger. a lot of fluctuations, are difficult to handle in this region.

The behavior ok(t;,t) has also been studied in this net- However, this region is not of much interest to us as for real
work. Again we find a deviation from the power-law behav- networks, such smal values seem unrealistic.
ior as\ becomes less than 3. Asis made smallerk(t;,t) (3) The power-law decay behavior kft;,t) observed for
becomes flat as expected. A>3 also becomes invalid asis made smaller.

The clustering coefficients have been estimated in this (4) For large values of, the degree distribution is sta-
model as wellC(t) as a function o shows a increase as  tionary while for smallx (presumably fora <0.5) it be-
is decreased as expectedg., forn=3.0,C(t)=0.029 and for comes dependent on the size of the network.

A=1.5, C(t)=0.679 fort=1000. As a function oft, C(t) A straightforward comparison of the above two models
shows a decrease withfor A >2.0. However, as is made Shows that the stochastic model is closer to real-world net-
smaller, for the values of<2000 at leastC(t) shows an Works. This is concluded from comparison with real-world

increase with. We conjecture that(t) becomes independent data: the out-degree distribgtions in phone call, citation, etc.,
of t for larget values forx <2.0. HereC(k) shows a loga- N€tworks show a decay, either power law or exponential,
rithmic decay withk: C(k) ~a—b In(ck) with the values of yvhlle in the deterministic model, we find a growing behav-

a,b depending strongly ok andc=1 for all A. Botha and lor. Even though we get a power-law decayR(k) in the

b approach zero for very large. As \ is decreased bota deterministic model, the exponentis always>3 while in

andb increase indicating a larger value @k) together with most real networks, it is closer to 2 and can be even less than
a sharper decay 2. The stochastic model on the other hand has an out-degree

distribution which shows a power-law decay. It also shows

that the scale-free behavior can vanish even in a growing

IV. SUMMARY, COMMENTS, AND DISCUSSIONS network with preferential attachment. In fact the stretched

exponential behavior of the degree distribution observed for

We have considered both deterministic and stochastismall degrees is reminiscent of the behavior of the degree
models of growing networks with preferential attachment indistribution in citation network6]. The stochastic model is

which the number of incoming links is a function of time. In also of theoretical interest as it indicates the existence of

0.0100

P(K)

0.0001
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transitions at finite values of. However, the deterministic directed network with accelerated growth, the outgoing links
model has its own merits: it is easy to construct and a numalso show a power law with exponent close to 2 in good
ber of results for it can be obtained analytically in the con-agreement with theorja0].
tinuum limit. The peak obtained in the total degree distribu-  |n conclusion, we have tried to construct models of accel-
tion in this model may be compared to similar peakserated growth where the number of outgoing links increase
obtained in some real-world networks, e.g., the coauthorshipyith the network size following certain prescriptions. A con-
network[18] or the Indian railways networkl9). _ tinuum theory can be formulated for the deterministic case
The citation network is perhaps the most appropriate netyhich can be applied in the stochastic case in the mean field
work which the stochastic model emulates. However, the Ciinit Based on the different results obtained in the models

tation network is essennally a d'r‘.a.Cted. network. Thergfoque conclude that the stochastic model is closer to real-world
we have also considered a specific directed model in th etworks

stochastic case, which follows the attachment rule as in Rer.
[13] and whereP,(m) has a peak and an exponential decay
[7]. The results show that it has a power-law decay in the
in-degree distribution withy~2 (not much different from
the case when there is no accelerated grd@8}). There are The author wishes to thank the networkers of Kolkata: A
some available data on citation netwdi® 7] but the data Chatterjee, S. Dasgupta, S. S. Manna, G. Mukherjee, and P.
and the analyses are not sufficiently general to compare witBreeram for comments and encouragement and |. Bose and
simulation data. In this context it may be mentioned that in &. Banerji for relevant discussions. Financial support from
model to simulate the gene regulatory network, which is @ST Grant No. SP/S2/M-11/99 is acknowledged.
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